
Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Hacking Embedded Crypto
Implementations using Fault

Injection

Johannes Bauer
<johannes.bauer@de.bosch.com>

Bosch Software Innovations GmbH

March 14th 2013

1 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

whoami

Graduated at Uni Erlangen as Dipl. Inf.
Employed at Bosch SI since 2009 (Immenstaad
am Bodensee) as Software Developer
Ph.D. candidate with Felix Freiling since April
2012
Area of research: Security of embedded devices

2 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Embedded devices

By this, we refer to microcontroller/SoC-based
systems
“System on a Chip” ≈ “Batteries included –
everything is ready to go”

Flash-Memory (program storage)
EEPROM-Memory (data storage)
RAM
ALU, FPU
A bunch of peripherals

3 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

What’s so special?

So then embedded security is just security on
smaller devices?
Why would this be so special?
Why do they even employ people to look into it?
This doesn’t make sense.

4 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

What’s so special?

With embedded devices, we have a fundamental
different attack model compared to usual
scenarios
Main difference: our cryptographic material is in
the hands of potential attackers 24/7 (i.e.
customers)
The attacker has unlimited time on her hands

5 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Example

This is a problem when cryptographic secrets
are (more or less) sensitive
Embedded devices doing crypto are ubiquitous

Symmetric crypto keys (RFID systems, locking
systems)
Asymmetric keys (CV certificates, device
identification, smart meter signatures)

6 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Noninvasive attack

Leakage can not only occur via timing channels,
but also via radiated emission
Most important example: differential power
analysis
Idea: measure power consumption over time,
correlate with model, calculate key
CMOS model dictates power consumption peak
on a flipping bit, otherwise almost no dissipation

7 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Seminvasive attack

Timing attacks work a lot better in an
environment where the attacker controls the
device main clock
Clock-cycle accurate measurements are no
problem for a sophisticated attacker
And clock can be controlled in a “bullet-time”
manner
See Goodspeed “A Side-channel Timing Attack
of the MSP430 BSL”
Where he exploits a 2-cycle difference (6511 vs.
6513 ≈ 400µs at 16MHz)

8 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Invasive attack

Processors operate only within certain
constraints reliably
The most important constraints are

Voltage conditions (supply voltage)
Temperature range
Clock waveform shape and parameters (frequency,
dutycycle)

9 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Invasive attack

If all parameters are in spec, then the device
works reliably (Atmel: 105°C 153 years, 65°C
1929 years)
...but if they aren’t, then all bets are off
This is what we’ll be exploting in this talk

10 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Basics

Maximally invasive attack

With very sophisticated equipment, it’s possible
to open the chip physically
Equipment: focused ion beam, electron
microscope, microprober
Enough to pretty much break all hardware today,
but very expensive ($1 Mio.)
So all in all, rather expensive

11 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Fault Injection

Fault injection

An interesting attack method is to push the
operating parameters into an illegal region
These glitches/faults will cause the CPU to
perform undefined behavior

Bitflips in the registers (flags!) or on the busses
Control flow mishaps (errors during decoding)

12 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Fault Injection

How?

At critical points we induce brownouts (i.e. let
the supply voltage drop below the guaranteed
limit) for a very short period of time
Or we modulate fast (nanosecond) pulses on the
clock signal
This will either modify control flow or data
transfer

13 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Fault Injection

But why?

Undefined behavior usually means: The
program crashes
This doesn’t really help, but it’s no real problem
either: We just try again
Try again until what exactly happens?

14 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Fault Injection

Try until?

We try to force the processor into miscalculating
a cryptographic operation
In the hopes that it will spit out the (wrong)
calculation result
With that calculation result and some modular
arithmetic, we can do pretty impressive things

15 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Fault Injection

Pretty impressive

pretty impressive (coll.)
1 Making, or tending to make, an

impression
2 Being able to recover private key

material using fault injection :-)

16 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

Keep calm and carry on

Please bear with me for a moment
If you don’t understand everything comepletely,
don’t worry — you don’t have to understand the
whole theory in order to use it
All I want to get across: fault injection isn’t just
some obscure made-up attack — it’s a security
developers nightmare and incredibly unintuitive

17 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA Revisited

Choose primes p,q (secret!)
Calculate modulus n = p ·q (public)
Choose encrypting exponent e (public, usually
65537)
d = e−1 mod ϕ(n)
Public: (e,n), private: (d ,n)
Encryption: c = pe mod n
Signature: s = md mod n

18 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA

The basic primitive that is always used in RSA is
the modular exponentiation
x = ab mod c
This needs to be calculated often (encryption,
decryption, singing, signature verification)
And it tends to be slow (even more so on
embedded systems)

19 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA

So we need a fast way to calculate md mod n
Implementations use an algorithmic trick
(chinese remainder theorem)
Precalculate in advance once:

dp = d mod (p−1)
dq = d mod (q−1)
q′ = q−1 mod p

20 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA

And then at runtime:
s = md mod n calculation via detour:
s1 = mdp mod p = s mod p
s2 = mdq mod q = s mod q
h = (q′ · (s1− s2)) mod p
s = s2 +(h ·q) mod n

21 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

Efficient?

RSA-CRT method uses twice as many modular
exponentiations than the naive approach
But they are only of half bitlength
Amount of operations is approximately quadratic
with bitlength (square/multiply)
i.e. O(2 ·n2) is better than O((2 ·n)2)

22 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

Does it work?

s = s2 +(((q′ · (s1− s2)) mod p) ·q) mod n
Modulo p: s1 = s mod p
Modulo q: s2 = s mod q
!→ Modulo n: s mod n (because of CRT)

23 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

If things go wrong

So assume we know the correct signature of a
message
And we then get the system to sign the same
message again, this time we use fault injection
Our target is to inject a fault so the system
miscalculates s2, i.e. it uses s′2

24 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

If things go wrong

s =s2 +(((q′ · (s1− s2)) mod p) ·q) mod n

s′ =s2 +(((q′ · (s′1− s2)) mod p) ·q) mod n

s− s′ =s2 +(((q′ · (s1− s2)) mod p) ·q)
−s2− (((q′ · (s′1− s2)) mod p) ·q) mod n

=(((q′ · (s1− s2)) mod p) ·q)
−(((q′ · (s′1− s2)) mod p) ·q) mod n

25 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

If things go wrong

s− s′ = ((q′ · (s1− s2))− ((q′ · (s′1− s2))) mod p) ·q
= ((q′ · (s1− s2− s′1 + s2)) mod p) ·q
= ((q′ · (s1− s′1)) mod p)︸ ︷︷ ︸

x

·q

26 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

If things go wrong

Fault injection aesthetics

gcd(x ·q,n) = gcd(x ·q,p ·q) !
= q

27 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA

p = 101,q = 103
n = p ·q = 10403
e = 7,d = e−1 mod ϕ(n) = 8743
Public: (e,n), private: (d ,n)
Encryption: c = pe mod n
Signature: s = md mod n

28 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

Correct signature

Signing m = 1234:
dp = 43,dq = 73,q−1 = 51 mod p
s1 = 4,s2 = 62
h = 72
s = 1234d mod n = 7478

29 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA Fault Attack

Then glitched signing: d ′q = dq & (∼ 1):

dp = 43,d ′q = 72,q−1 = 51 mod p
s1 = 4,s2 = 72
h = 67
s′ = 6973

30 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Theory

RSA Fault Attack

Message: m = 1234
Correct signature: s = 7478
Wrong signature: s′ = 6973
Recovery: gcd((s− s′) mod n,n)
gcd(7478−6973,n) = gcd(505,10403) =

= 101
!
= p

31 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Practice

Practical attack

Requires hardware to induce faults in our target
And some controlling logic that times when the
faults are injected
Together with some processing login (in short:
another MCU system that evaluates the target’s
responses)

32 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Practice

GoodFET JTAG

33 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Practice

A word on other faults

RSA-CRT is obviously not the only vulnerability
Elliptic curves have a similar problem (force
weak twist of the curve or glitch off-curve point)
Symmetric ciphers implementations are also
vulnerable
All in all, this is a minefield and very
counter-intuitive

34 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

What? How?

Obviously we can’t do this here with real
hardware
But we’ll try the next best thing:

First we generate RSA keys with OpenSSL
Then “glitch” OpenSSL to create borked signatures
And use sage to recover our private key

35 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

WIFI Parameters

ESSID: workshop0815
Password: notsecure
ssh groupx@192.168.123.1

36 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Generating a certificate

./gencrt

Creates certificate (myuser.crt) and private
key (myuser.key)
Key is stored in DER format so we can easily
hack it later on

37 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Generating a document to sign

echo ’TODO: Think of witty text’
>signme.txt

;-)
What that content is, doesn’t matter.

38 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Examining the key

./showkey myuser.key
modulus: n
publicExponent: e
privateExponent: d
prime1: p
prime2: q
exponent1: d mod (p−1)
exponent2: d mod (q−1)
coefficient: h

If you like it rough: openssl rsa -inform der
-noout -text -in myuser.key

39 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Glitching OpenSSL

Create a copy of your key
cp myuser.key myuser broken.key

Now look at the exponent1 again and memorize
a part of it
Then open hexedit and edit that exponent1 (e.g.
flip a bit):
hexedit myuser broken.key

Exit hexedit with Ctrl-W, Ctrl-X
Examine both keys again to verify it worked:
./showkey myuser broken.key

40 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Glitching OpenSSL

You now have an intact keypair and a broken
one (modified exponent1)
Let’s sign your document with both to gernerate
two signatures:
./signdoc
Signing with proper key
Signing with broken (fault injected)
key

41 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Glitching OpenSSL

Two signatures have been created, one by the
proper and one by the broken key
Dump those signature values:
./dumpsig signature.p7

./dumpsig signature broken.p7

42 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Introduction

Glitching OpenSSL

Copy and paste the signature values (OCTET
STRING at the end) for use in sage
Open up sage and do some modular magic!
Redirect your browser to
https://192.168.123.1:8080

43 / 44

Hardware Security RSA-CRT Fault Injection Hackalong Conclusion

Conclusion

Are there further...

...questions?

44 / 44

	Hardware Security
	Basics
	Fault Injection

	RSA-CRT Fault Injection
	Theory
	Practice

	Hackalong
	Introduction

	Conclusion
	Conclusion

