Hacking Embedded Crypto
Implementations using Fault
Injection

Johannes Bauer
<johannes.bauer@de.bosch.com>

Bosch Software Innovations GmbH

March 14th 2013

Hardware Security
©000000000

Basics

whoami

@ Graduated at Uni Erlangen as Dipl. Inf.

@ Employed at Bosch Sl since 2009 (Immenstaad
am Bodensee) as Software Developer

@ Ph.D. candidate with Felix Freiling since April
2012

@ Area of research: Security of embedded devices

Hardware Security
0@00000000

Basics

Embedded devices

@ By this, we refer to microcontroller/SoC-based
systems
@ “System on a Chip” ~ “Batteries included —
everything is ready to go”
@ Flash-Memory (program storage)
e EEPROM-Memory (data storage)
e RAM
e ALU, FPU
@ A bunch of peripherals

Hardware Security
00®0000000

Basics

What’s so special?

@ So then embedded security is just security on
smaller devices?

@ Why would this be so special?
@ Why do they even employ people to look into it?
@ This doesn’t make sense.

Hardware Security
[ee]eY Tolelelelele)

Basics

What’s so special?

@ With embedded devices, we have a fundamental
different attack model compared to usual
scenarios

@ Main difference: our cryptographic material is in
the hands of potential attackers 24/7 (i.e.
customers)

@ The attacker has unlimited time on her hands

Hardware Security
0000®00000

Basics

Example

@ This is a problem when cryptographic secrets
are (more or less) sensitive
@ Embedded devices doing crypto are ubiquitous

@ Symmetric crypto keys (RFID systems, locking
systems)

@ Asymmetric keys (CV certificates, device
identification, smart meter signatures)

Hardware Security
00000®0000

Basics

Noninvasive attack

@ Leakage can not only occur via timing channels,
but also via radiated emission

@ Most important example: differential power
analysis

@ Idea: measure power consumption over time,
correlate with model, calculate key

@ CMOS model dictates power consumption peak
on a flipping bit, otherwise almost no dissipation

Hardware Security
000000e000

Basics

Seminvasive attack

@ Timing attacks work a lot better in an
environment where the attacker controls the
device main clock

@ Clock-cycle accurate measurements are no
problem for a sophisticated attacker

@ And clock can be controlled in a “bullet-time”
manner

@ See Goodspeed “A Side-channel Timing Attack
of the MSP430 BSL”

@ Where he exploits a 2-cycle difference (6511 vs.
6513 ~ 400us at 16MHz)

Hardware Security
0000000800

Basics

Invasive attack

@ Processors operate only within certain
constraints reliably
@ The most important constraints are

@ Voltage conditions (supply voltage)

@ Temperature range

@ Clock waveform shape and parameters (frequency,
dutycycle)

Hardware Security
0000000080

Basics

Invasive attack

@ If all parameters are in spec, then the device
works reliably (Atmel: 105°C 153 years, 65°C
1929 years)

@ ...but if they aren’t, then all bets are off

@ This is what we’ll be exploting in this talk

10/44

Maximally invasive attack

@ With very sophisticated equipment, it's possible
to open the chip physically

@ Equipment: focused ion beam, electron
microscope, microprober

@ Enough to pretty much break all hardware today,
but very expensive ($1 Mio.)

@ So all in all, rather expensive

11/44

Hardware Security
®0000

Fault Injection

Fault injection

@ An interesting attack method is to push the
operating parameters into an illegal region

@ These glitches/faults will cause the CPU to
perform undefined behavior

@ Bitflips in the registers (flags!) or on the busses
@ Control flow mishaps (errors during decoding)

12/44

Hardware Security
0®000

Fault Injection

How?

@ At critical points we induce brownouts (i.e. let
the supply voltage drop below the guaranteed
limit) for a very short period of time

@ Or we modulate fast (nanosecond) pulses on the
clock signal

@ This will either modify control flow or data
transfer

13/44

Hardware Security
00®00

Fault Injection

But why?

@ Undefined behavior usually means: The
program crashes

@ This doesn’t really help, but it’s no real problem
either: We just try again

@ Try again until what exactly happens?

14/44

Hardware Security
000®0

Fault Injection

Try until?

@ We try to force the processor into miscalculating
a cryptographic operation

@ In the hopes that it will spit out the (wrong)
calculation result

@ With that calculation result and some modular
arithmetic, we can do pretty impressive things

15/44

Hardware Security
0000e

Fault Injection

Pretty impressive

pretty impressive (coll.)
@ Making, or tending to make, an
impression
@ Being able to recover private key
material using fault injection :-)

16/44

RSA-CRT Fault Injection
©00000000000000

Theory

Keep calm and carry on

@ Please bear with me for a moment

@ If you don’t understand everything comepletely,
don’t worry — you don’t have to understand the
whole theory in order to use it

@ All I want to get across: fault injection isn’t just
some obscure made-up attack — it’s a security
developers nightmare and incredibly unintuitive

17/44

Theory

RSA-CRT Fault Injection

RSA Revisited

Choose primes p, g (secret!)

@ Calculate modulus n= p- q (public)
@ Choose encrypting exponent e (public, usually

65537)

d=e"" modo(n)

Public: (e, n), private: (d, n)
Encryption: ¢ = p® mod n
Signature: s=m% mod n

18/44

RSA-CRT Fault Injection

00®000000000000

@ The basic primitive that is always used in RSA is
the modular exponentiation

b modc

@ This needs to be calculated often (encryption,
decryption, singing, signature verification)

@ X=2a4a

@ And it tends to be slow (even more so on
embedded systems)

19/44

RSA-CRT Fault Injection

000®@00000000000

@ So we need a fast way to calculate m® mod n

@ Implementations use an algorithmic trick
(chinese remainder theorem)
@ Precalculate in advance once:
® dy=d mod(p—1)
@ dy=d mod(g—1)
e d=q "' modp

20/44

RSA-CRT Fault Injection
0000®0000000000

@ And then at runtime:

s =m? mod n calculation via detour:

sy=m% modp=s modp
so=m% modg=s modgq
h=(q'- (st —sz)) modp
s=sy+(h-q) modn

21/44

RSA-CRT Fault Injection
00000®000000000

Theory

Efficient?

@ RSA-CRT method uses twice as many modular
exponentiations than the naive approach

@ But they are only of half bitlength

@ Amount of operations is approximately quadratic
with bitlength (square/multiply)

@ i.e. O(2-n?) is better than O((2- n)?)

22/44

RSA-CRT Fault Injection

Theory

Does it work?

© s=s52+(((q'- (51 —52)) modp)-q) modn
@ Modulo p: s1=s modp
@ Modulo g: s, =s mod g

° —|> Modulo n: s mod n (because of CRT)

23/44

RSA-CRT Fault Injection
000000080000000

Theory

If things go wrong

@ So assume we know the correct signature of a
message

@ And we then get the system to sign the same
message again, this time we use fault injection

@ Our target is to inject a fault so the system
miscalculates sy, i.e. it uses 3’2

24/44

s=s2+(((d - (51 —s2)) modp)-q) modn

s =S+ (((q’ : (Sq - 32)) mod ,O) . q) mod n
s—8 =s2+ (((q/ -(s1—5s2)) modp)-q)

—S2 — (((q’ : (34 —5Sp)) modp)-q) modn

=(((q'- (s1 —s2)) mod p)-q)
—(((q’ : (34 - 82)) mod p) . q) mod n

RSA-CRT Fault Injection

Theory

If things go wrong

s—8 =((q"-(s1—52)) —((d - (s§ —s2))) modp)-q
=((q'- (s —s2— 8| +52)) modp)-q
=((d"-(s1 —&{)) modp)-q

~

X

26/44

RSA-CRT Fault Injection

Theory

If things go wrong

Fault injection aesthetics

!
ged(x-q,n) =gcd(x-q,p-q) =q

27/44

RSA-CRT Fault Injection

00000000000 e000

p=101,g=103
n=p-q=10403

e=7,d=e"" mod@(n)=8743
Public: (e, n), private: (d, n)

Encryption: ¢ = p® mod n
d

Signature: s=m“ modn

28/44

RSA-CRT Fault Injection

Theory

Correct signature

@ Signing m = 1234:
@ d,=43,d,=73,g ' =51 modp
@ 51 =4,5 =62
@ h=72

@ s=12349 mod n= 7478

29/44

RSA-CRT Fault Injection

Theory

RSA Fault Attack

@ Then glitched signing: dé, =dg & (~1):
® dp=43,d,=72,g°' =51 modp
@ 51 =4,5=72
@ h=67

e s =6973

30/44

RSA-CRT Fault Injection

Theory

RSA Fault Attack

Message: m = 1234

Correct signature: s = 7478

Wrong signature: s’ = 6973

Recovery: gcd((s—s') mod n,n)
gcd(7478 — 6973, n) = gcd(505,10403) =
=101 =p

31/44

RSA-CRT Fault Injection
®00

Practice

Practical attack

@ Requires hardware to induce faults in our target

@ And some controlling logic that times when the
faults are injected

@ Together with some processing login (in short:
another MCU system that evaluates the target’s

responses)

32/44

RSA-CRT Fault Injection
oceo

Practice

GoodFET JTAG

=
il e
5559 it

e

g \ g
-5

RSA-CRT Fault Injection
ocoe

Practice

A word on other faults

@ RSA-CRT is obviously not the only vulnerability

@ Elliptic curves have a similar problem (force
weak twist of the curve or glitch off-curve point)

@ Symmetric ciphers implementations are also
vulnerable

@ Allin all, this is a minefield and very
counter-intuitive

34/44

Hackalong
©00000000

Introduction

What? How?

@ Obviously we can’t do this here with real
hardware
@ But we'll try the next best thing:

@ First we generate RSA keys with OpenSSL
@ Then “glitch” OpenSSL to create borked signatures
@ And use sage to recover our private key

35/44

Hackalong
0®0000000

Introduction

WIF| Parameters

@ ESSID: workshop0815
@ Password: notsecure
@ ssh groupx@192.168.123.1

36/44

Hackalong
00®000000

Introduction

Generating a certificate

@ ./gencrt

@ Creates certificate (myuser.crt) and private
key (myuser.key)

@ Key is stored in DER format so we can easily
hack it later on

37/44

Introduction

Generating a document to sign

@ echo ’TODO: Think of witty text’
>signme. txt

° ;)
@ What that content is, doesn’t matter.

38/44

Hackalong
0000®0000

Introduction

Examining the key

@ ./showkey myuser.key

@ modulus: n
publicExponent: e
privateExponent: d
primel: p

prime2: q

exponent1: d mod (p—1)
exponent2: d mod (g —1)
@ coefficient: h

@ If you like it rough: openssl rsa -inform der
-noout -text -in myuser.key

39/44

Hackalong
000008000

Introduction

Glitching OpenSSL

@ Create a copy of your key
@ cp myuser.key myuser_broken.key

@ Now look at the exponent1 again and memorize
a part of it

@ Then open hexedit and edit that exponenti (e.g.
flip a bit):

@ hexedit myuser_broken.key

@ Exit hexedit with Ctrl-W, Ctrl-X

@ Examine both keys again to verify it worked:
./showkey myuser_broken.key

40/44

Hackalong
000000®00

Introduction

Glitching OpenSSL

@ You now have an intact keypair and a broken
one (modified exponent1)

@ Let’s sign your document with both to gernerate
two signatures:

@ ./signdoc
Signing with proper key
Signing with broken (fault injected)
key

41/44

Hackalong
000000080

Introduction

Glitching OpenSSL

@ Two signatures have been created, one by the
proper and one by the broken key

@ Dump those signature values:
@ ./dumpsig signature.p?
@ ./dumpsig signature_broken.p7

42/44

Hackalong
00000000e

Introduction

Glitching OpenSSL

@ Copy and paste the signature values (OCTET
STRING at the end) for use in sage

@ Open up sage and do some modular magic!

@ Redirect your browser to
https://192.168.123.1:8080

43/44

Are there further...

...questions?

	Hardware Security
	Basics
	Fault Injection

	RSA-CRT Fault Injection
	Theory
	Practice

	Hackalong
	Introduction

	Conclusion
	Conclusion

